A highly specific gold nanoprobe for live-cell single-molecule imaging.

نویسندگان

  • Cécile Leduc
  • Satyabrata Si
  • Jérémie Gautier
  • Martinho Soto-Ribeiro
  • Bernhard Wehrle-Haller
  • Alexis Gautreau
  • Grégory Giannone
  • Laurent Cognet
  • Brahim Lounis
چکیده

Single molecule tracking in live cells is the ultimate tool to study subcellular protein dynamics, but it is often limited by the probe size and photostability. Because of these issues, long-term tracking of proteins in confined and crowded environments, such as intracellular spaces, remains challenging. We have developed a novel optical probe consisting of 5 nm gold nanoparticles functionalized with a small fragment of camelid antibodies that recognize widely used green fluorescent proteins (GFPs) with a very high affinity, which we call GFP-nanobodies. These small gold nanoparticles can be detected and tracked using photothermal imaging for arbitrarily long periods of time. Surface and intracellular GFP-proteins were effectively labeled even in very crowded environments such as adhesion sites and cytoskeletal structures both in vitro and in live cell cultures. These nanobody-coated gold nanoparticles are probes with unparalleled capabilities; small size, perfect photostability, high specificity, and versatility afforded by combination with the vast existing library of GFP-tagged proteins.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Biocompatible Nanoprobe Based on Lipoproteins for Breast Cancer Cell Imaging

Objective(s): Contrast-enhanced magnetic resonance imaging (MRI) of breast cancer provides valuable data on the disease state of patients. Biocompatible nanoprobes are expected to play a pivotal role in medical diagnosis in the future owing to their prominent advantages. The present study aimed to introduce a novel biocompatible nanoprobe based on lipoproteins for breast cancer cell imaging.<br...

متن کامل

Gold nanoparticles functionalized with cresyl violet and porphyrin via hyaluronic acid for targeted cell imaging and phototherapy.

Gold nanoparticles are functionalized as a nanoprobe with cresyl violet and porphyrin via hyaluronic acid. The nanoprobe becomes highly fluorescent in the presence of hyaluronidase or under ultraviolet irradiation, and can be used to target cancer cells via the overexpressed CD44 receptor for fluorescence imaging and phototherapy.

متن کامل

Biofunctionalization of Gold Nanorods: A Comparative Study on Conjugation Methods for Fabrication of Nanobiosensors

Gold Nanorods have promised variety of applications in biomedicine and biosensing. As a fruitful candidate for early detection and imaging, these plasmonic nanoparticles have been utilized for diagnostic applications of interest. However, prior to design and fabricate SPR-based nanobiosensors, the type and nature of conjugation with biomolecules would be of utmost importance. Herein, four strat...

متن کامل

In vitro Study of SPIONs-C595 as Molecular Imaging Probe for Specific Breast Cancer (MCF-7) Cells Detection

Background: Magnetic resonance imaging (MRI) plays an essential role in molecular imaging by delivering the contrast agent into targeted cancer cells. The aim of this study was to evaluate the C595 monoclonal antibody-conjugated superparamagnetic iron oxide nanoparticles (SPIONs-C595) for the detection of breast cancer cell (MCF-7). Methods: The conjugation of monoclonal antibody and nanopartic...

متن کامل

Synthesis and characterization of an HSP27-targeted nanoprobe for in vivo photoacoustic imaging of early nerve injury.

Imaging is routinely used for clinical and diagnostic purposes, but techniques capable of high specificity and resolution for the early detection of nerve injury are still limited. In this study, we found that heat shock protein 27 (HSP27) becomes highly upregulated within 3 to 7 days of nerve injury. Taking advantage of this expression pattern, we conjugated gold nanorods (GNRs) to HSP27-speci...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nano letters

دوره 13 4  شماره 

صفحات  -

تاریخ انتشار 2013